Image quantization as a dimensionality reduction procedure in color and texture feature extraction
نویسندگان
چکیده
The image-based visual recognition pipeline includes a step that converts color images into images with a single channel, obtaining a color-quantized image that can be processed by feature extraction methods. In this paper we explore this step in order to produce compact features that can be used in retrieval and classification systems. We show that different quantization methods produce very different results in terms of accuracy. While compared with more complex methods, this procedure allows the feature extraction in order to achieve a significant dimensionality reduction, while preserving or improving system accuracy. The results indicate that quantization simplify images before feature extraction and dimensionality reduction, producing more compact vectors and reducing system complexity.
منابع مشابه
کاهش رنگ تصاویر با شبکههای عصبی خودسامانده چندمرحلهای و ویژگیهای افزونه
Reducing the number of colors in an image while preserving its quality, is of importance in many applications such as image analysis and compression. It also decreases memory and transmission bandwidth requirements. Moreover, classification of image colors is applicable in image segmentation and object detection and separation, as well as producing pseudo-color images. In this paper, the Kohene...
متن کاملA Study of the Effect of Color Quantization Schemes for Different Color Spaces on Content-based Image Retrieval
Color spaces, color histograms, histogram distance measurements, size and quantization play an important role in retrieving images based on similarities. This paper presents a study of the effect of color quantization schemes for different color spaces (HSV, YIQ and YCbCr) on the performance of content-based image retrieval (CBIR), using different histogram distance measurements (Histogram Eucl...
متن کاملSurvey of Image Fusion Techniques for Brain Tumor Detection
Image Fusion is the process of combining relevant information from two or more images into a single composite image. Image fusion is used to detect the tumor by integrating two or more medical images. In this paper, we propose Genetic algorithm to detect the brain tumor, which generate solutions to optimization problems using techniques, such as selection, crossover and mutation. Before applyin...
متن کاملHyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations
The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...
متن کاملDisguised Face Recognition by Using Local Phase Quantization and Singular Value Decomposition
Disguised face recognition is a major challenge in the field of face recognition which has been taken less attention. Therefore, in this paper a disguised face recognition algorithm based on Local Phase Quantization (LPQ) method and Singular Value Decomposition (SVD) is presented which deals with two main challenges. The first challenge is when an individual intentionally alters the appearance ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurocomputing
دوره 173 شماره
صفحات -
تاریخ انتشار 2016